

 Project Final Report

 Animatronic Hand Controller

 Group-5(Mas-Cube)
 Department of EEE, Ahsanullah University of Sciene And Technology,Dhaka,Bangladesh

 Team members

 Oshin_sabrina@yahoo.com

 kazisadman047@gmail.com

 mowleemannan@gmail.com

 afrozahaque77@gmail.com

 ananto.tr@gmail.com

 Project Abstract-

 For some time, We have been interested in

making some sort of robot based on the Arduino

platform. This project is the first phase of this

longer-term desired effort. Anything is possible

with the mighty power of Arduino. It's

compact, it's straightforward, and makes

embedding electronics into the world-at-large

fun and easy.

Animatronics is the use of mechatronics to create

machines which seem animate rather than

robotic. Animatronic figures are most often

powered by pneumatics (compressed air), and,

in special instances, hydraulics (pressurized oil),

or by electrical means. The figures are precisely

customized with the exact dimensions and

proportions of living creatures. Motion

actuators are often used to imitate “muscle”

movements, such as limbs to create realistic

motions. Also, the figure is covered with body

shells and flexible skins made of hard and soft

plastic materials. Then, the figure can be

finished by adding details like colors, hair and

feathers and other components to make the

figure more realistic.

The project idea came to us after watching the

movie named “Real Steel”. We wanted to make

a shadow robot from our curiosity. As the whole

body of the robot would have been of much

cost, We decided to make a shadow hand

instead. Approximating the kinematics of the

human hand was our top priority when

developing this animatronic hand. Each joint

of this hand has a movement range again the

same as or very close to that of a human hand,

including the thumb and even the flex of the

palm for the little finger.

Keywords- Arduino, Servo motors, Flex

sensors, Power IC, Programming of the

Arduino.

I. INTRODUCTION

Oshin_sabrina@yahoo.com%20
mailto:%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20kazisadman047@gmail.com
mowleemannan@gmail.com
mailto:afrozahaque@gmail.com
ananto.tr@gmail.com
http://en.wikipedia.org/wiki/Mechatronics
http://en.wikipedia.org/wiki/Possession_%28linguistics%29#Animate_and_inanimate
http://en.wikipedia.org/wiki/Robotic

This paper mainly analysis about different

topologies and designs regarding the construction

of this Arduino based animatronic hand. Although

more complicated and precise(more expensive)

versions of this concept have been developed, this

is a fun project with many potential applications.

Interactive robot control of this level, I think, has

many uses in industrial manufacturing, medical

research, and anything you want to be able to do

with precision that is unsafe to touch.

The basic components of the hand and glove are

the hand itself, the servos, the Arduino, the glove,

and the flex sensors. The glove is mounted with

flex sensors: variable resistors that change their

value when bent. They're attached to one side of a

voltage divider with resistors of a constant value on

the other side. The Arduino reads the voltage

change when the sensors are bent, and triggers the

servos to move a proportional amount. The servo

pull strings that act as tendons, allowing the fingers

to move.

I. STATUS OF THE PROJECT

This project has been completed successfully, and

my goal of integrating all of the underlying

technologies has been met.

This animatronic hand is able to be controlled

according to the controller’s wish. It’s capable of

moving at the required degrees of freedom. It can

also pick up things upto minimum desired weight .

Now, we can use it as a shadow hand of ours which

is of various use. With the help of sensors, this

hand can now provide detailed telemetry, which

can be exploited to generate innovative

manipulation control systems or to provide detailed

understanding of the external environment.

 In the sections that follow, I will describe various

outstanding areas that could stand to see some

further refinement.

II. DESIGN

A. SYSTEM OVERVIEW

1. WORKING PRINCIPAL OF ARDUINO

HARDWARE-

The Arduino microcontroller is an easy to use yet

powerful single board computer that has gained

considerable traction in the hobby and professional

market. The Duemilanove board features an Atmel

ATmega328 microcontroller operating at 5 V with

2 Kb of RAM, 32 Kb of flash memory for storing

programs and 1 Kb of EEPROM for storing

Parameters. The clock speed is 16 MHz, which

translates to about executing about 300,000 lines

of C source code per second. The board has 14

digital I/O pins and 6 analog input pins. There is

a USB connector for talking to the host computer

and a DC power jack for connecting an external 6-

20 V power source, for example a 11.1 V battery,

when running a program while not connected to the

host computer. Headers are provided for interfacing

to the I/O pins using 22 g solid wire or header

connectors.

The Arduino programming language is a simplified

version of C/C++. If you know C, programming the

Arduino will be familiar. If you do not know C, no

need to worry as only a few commands are needed

to perform useful functions. An important feature

of the Arduino is that we can create a control

program on the host PC, download it to the

Arduino and it will run automatically. Remove the

USB cable connection to the PC, and the program

will still run from the top each time you push the

reset button. Remove the battery and put the

Arduino board in a closet for six months. When

you reconnect the battery, the last program you

stored will run. This means that you connect the

board to the host PC to develop and debug your

program, but once that is done, you no longer need

the PC to run the program.

The power of the Arduino is not its ability to

crunch code, but rather its ability to interact with

the outside world through its input-output (I/O)

pins. The Arduino has 14 digital I/O pins labeled

0 to 13 that can be used to turn motors and lights

on and off and read the state of switches. Each

digital pin can sink or source about 40 mA of

current. This is more than adequate for interfacing

to most devices, but does mean that interface

circuits are needed to control devices other than

simple LED's. In other words, you cannot run a

motor directly using the current available from an

Arduino pin, but rather must have the pin drive an

interface circuit that in turn drives the motor. A

later section of this document shows how to

interface to a small motor. To interact with the

outside world, the program sets digital pins to a

high or low value using C code instructions, which

corresponds to +5 V or 0 V at the pin. The pin is

connected to external

interface electronics and then to the device being

switched on and off. The sequence of events is

shown in this figure.

To determine the state of switches and other

sensors, the Arduino is able to read the voltage

value applied to its pins as a binary number. The

interface circuitry translates the sensor signal

into a 0 or +5 V signal applied to the digital I/O

pin. Through a program command, the Ardiomp

interrogates the state of the pin. If the pin is at 0 V,

the program will read it as a 0 or LOW. If it is at +5

V, the program will read it as a 1 or HIGH. If more

than +5 V is applied, you may blow out your board,

so be careful. The sequence of events to read a pin

is shown in this figure:

Interacting with the world has two sides. First, the

designer must create electronic interface

circuits that allow motors and other devices to be

controlled by a low (1-10 mA) current signal

that switches between 0 and 5 V, and other circuits

that convert sensor readings into a switched 0

or 5 V signal. Second, the designer must write a

program using the set of Arduino commands

that set and read the I/O pins.

When reading inputs, pins must have either 0 or 5V

applied. If a pin is left open or "floating", it will

read random

voltages and cause erratic results. This is why

switches always have a 10K pull up resistor

connected when

interfacing to an Arduino pin.

The reason to avoid using pins 0 and 1 is because

those pins are used for the serial communications

between

the Arduino and the host computer. The Arduino

also has six analog input pins for reading

continuous voltages in the range of 0 to 5

V from sensors such as potentiometers.

2. WORKING PRINCIPAL OF SERVO

MOTOR-

Unlike dc motors, with servo motors you can

position the motor shaft at a specific position

(angle) using control signal. The motor shaft will

hold at this position as long as the control signal

not changed. This is very useful for controlling

robot arms, unmanned airplanes control surface or

any object that you want it to move at certain angle

and stay at its new position. Servo motors may be

classified according to size or torque that it can

withstand into mini, standard and giant servos.

Usually mini and standard size servo motors can be

powered by Arduino directly with no need to

external power supply or driver.

The servo have 3 wires:
Black wire: GND (ground) !

RED wire:+5v !

Colored wire: control signal

The third pin accept the control signal which is a

pulse-width modulation (PWM) signal. It can be

easily produced by all micro- controllers and

Arduino board. This accepts the signal from your

controller that tells it what angle to turn to. The

control signal is fairly simple compared to that of a

stepper motor. It is just a pulse of varying lengths.

The length of the pulse corresponds to the angle the

motor turns to.

The pulse width sent to servo ranges as follows:

Minimum: 1 millisecond ---> Corresponds to 0

rotation angle.

Maximum: 2 millisecond ---> Corresponds to 180

rotation angle.

Any length of pulse in between will rotate the servo

shaft to its corresponding angle. For example : 1.5

ms pulse corresponds to rotation angle of 90

degree.

This is will explained in figure below:

3.WORKING PRINCIPAL OF FLEX SENSOR-

Flex sensors are sensors that change in resistance

depending how much the sensor is bend.

Sensors convert the change in bend to electrical

resistance - the more the sensor bend, the higher

the resistance value. Using the Flex Sensor is very

easy. There are couple of different manufacturers

in the market.

Datasheet instructs you to use operational amplifier

(opamps). That may be useful if you plan to use

flex sensor as stand-alone device (without any

microcontroller).Because We are using arduino,

We skipped all OpAmps and made a very simple

circuit with only one additional resistor.

Varying the value of the resistor will results

different readings. With 22k Ohm resistor I will

get values between 300-700. This works fine for

us. In our code we assumed that all values under

400 mean that the sensor is bend. All values above

600 mean that sensor is nor bend. Note that Flex

sensor give reliable readings ONLY if you bend it

on the specific direction (usually towards on the

text side of the sensor).

4. Motor Control Using Arduino-

A. OPERATING ONE SERVO WITH

ARDUINO:

Standard servo motor control using Arduino is

extremely easy. This is because the Arduino

software comes with a sample servo sketch and

servo library that will get you up and running

quickly:

1. Connect the black wire from the servo to the

Gnd pin on the Arduino

2. Connect the red wire from the servo to the +5V

pin on the Arduino

3. Connect the third wire (usually orange or

yellow) from the servo to a digital

pin on the Arduino.

Important Notes:

1- It is not a good idea to connect a motor of any

kind directly to the Arduino because it usually

requires more power than the board can provide.

2- In our example, the servo is being used to

demonstrate code and is not encountering any

resistance. Note that you should use a standard or

small size. if you are uncertain, check the servo's

no load current rating (it should usually be

under 150mA).

3-You may need an external source of 5 or 6 volts

when connecting multiple servos. Four AA cells

work well if you want to use battery power.

Remember that you must connect the ground of

the external power source to Arduino ground.

B. OPERATING TWO SERVO WITH

ARDUINO:

The Arduino can control two servos with the same

ease as one. All it takes is creating a second

instance (copy) of the Servo object, giving it a

unique name. In this project we had to use six

servos, five of which has to connect directly with

arduino at the same process of connecting one

servo with arduino. When wiring the solderless

breadboard, be especially careful not to mix

positive and negative leads to the servo.

Reversing the power will permanently damage

it.

In order for everything to function properly, the
ground connections for the Arduino and the servo

battery supply must be connected together.This is

shown in both the schematic and pictorial circuit

views. Make sure to also properly orient the
connectors for the servos when you plug them into

the board. Servo power leads are color-coded, but

the colors aren’t universal. Here two servos are

being connected with the arduino in the figure

given below:-

C. SYSTEM ALGORITHM

1. ARDUINO PROGRAMMING CODING

STYLE:-

The Arduino runs a simplified version of the C

programming language, with some extensions for

accessing the hardware. All Arduino instructions

are one line. The board can hold a program

hundreds of lines long and has space for about

1,000 two-byte variables. The Arduino executes

programs at about 300,000 source code lines per

sec. Programs are created in the Arduino

development environment and then downloaded to

the Arduino board. Code must be entered in the

proper syntax which means using valid command

names and a valid grammar for each code line. The

compiler will catch and flag syntax errors.

before download. Sometimes the error message

can be cryptic and you have to do a bit of hunting

because the actual error occurred before what was

flagged.

Style refers to our own particular style for creating

code and includes layout, conventions for

using case, headers, and use of comments. All code

must follow correct syntax, but there are many

different styles we can use. Here are some

suggestions:

 Starting every program with a comment header

that has the program name and perhaps a brief

description of what the program does.

 Using indentation to line things up. Function

name and braces are in column one. Mark major

sections or functions with a comment header line or

two.

 Having just the right number of comments, not

too few and not too many. Assume the reader

knows the programming language so have the

comment be instructive. Here is an example of an

instructive comment

digitalWrite(4,HIGH) // turn on

motor

and here is a useless comment
digitalWrite(4,HIGH) // set pin 4

HIGH

we need not comment every line. In fact,

commenting every line is generally bad practice.

 Adding the comments when you create the code.

If you tell yourself, "Oh, I'll add the comments

when the code is finished", you will never do it.

2.THE PROCESSING CODE:-

The processing code of our project is given below:-

#include <Servo.h>

int flexSensorPin1 = A0;

int flexSensorPin2 = A0;

int flexSensorPin3 = A0;

int flexSensorPin4 = A0;

int flexSensorPin5 = A0;

int flexSensorPin6 = A0;

Servo

servo1,servo2,servo3,servo4,ser

vo5,servo6;

void setup(){

Serial.begin(9600);

servo1.attach(9);

servo2.attach(8);

servo3.attach(7);

servo4.attach(6);

servo5.attach(5);

servo6.attach(4);

pinMode(flexSensorPin1,INPUT);

pinMode(flexSensorPin2,INPUT);

pinMode(flexSensorPin3,INPUT);

pinMode(flexSensorPin4,INPUT);

pinMode(flexSensorPin5,INPUT);

pinMode(flexSensorPin6,INPUT);

}

int pos=0;

void loop(){

int

fsr1=analogRead(flexSensorPin1)

;

//myServo.write(x);

//Serial.println(fsr);

int s1=map(fsr1, 605, 696, 180,

0);

Serial.println(s1);

if(s1>0 ||s1<180)

servo1.write((s1));

delay(100);

int

fsr2=analogRead(flexSensorPin2)

;

//myServo.write(x);

//Serial.println(fsr);

int s2=map(fsr2, 605, 696, 180,

0);

Serial.println(s2);

if(s2>0 ||s2<180)

servo2.write((s2));

delay(100);

int

fsr3=analogRead(flexSensorPin3)

;

//myServo.write(x);

https://www.facebook.com/hashtag/include

//Serial.println(fsr);

int s3=map(fsr3, 605, 696, 180,

0);

Serial.println(s3);

if(s3>0 ||s3<180)

servo3.write((s3));

delay(100);

int

fsr4=analogRead(flexSensorPin4)

;

//myServo.write(x);

//Serial.println(fsr);

int s4=map(fsr4, 605, 696, 180,

0);

Serial.println(s4);

if(s4>0 ||s4<180)

servo4.write((s4));

delay(100);

int

fsr5=analogRead(flexSensorPin5)

;

//myServo.write(x);

//Serial.println(fsr);

int s5=map(fsr5, 605, 696, 180,

0);

Serial.println(s5);

if(s5>0 ||s5<180)

servo5.write((s5));

delay(100);

int

fsr6=analogRead(flexSensorPin6)

;

//myServo.write(x);

//Serial.println(fsr);

int s6=map(fsr6, 605, 696, 180,

0);

Serial.println(s6);

if(s6>0 ||s6<180)

servo6.write((s6));

delay(100);

3.THE CODING STRUCTURE ANALYSIS:

In the program above, the very first thing that we

did in the setup function is to begin serial

communications, at 9600 bits of data per second,

between our Arduino and our computer with the

line:
Serial.begin(9600);

Next, initialize digital pin 8, the pin that will read

the output from your button, as an input:
pinMode(A8,INPUT);

Now let’s move into the main loop of your code.

A. FUNCTIONS:

1.ARDUINO PROGRAM FUNCTION

All Arduino programs have two functions, setup()

and loop().Other functions must be created outside

the brackets of those two functions. The

instructions you place in the startup() function are

executed once when the program begins and are

used to initialize. Use it to set directions of pins or

to initialize variables. The instructions placed in

loop are executed repeatedly and form the main

tasks of the program. Therefore every program has

this structure:
void setup()

{

// commands to initialize go here

}

void loop()

{

// commands to run your machine go

here

}

The absolute, bare-minimum, do-nothing program

that we can compile and run is
void setup() {} void loop() {}

The program performs no function, but is useful for

clearing out any old program. Note that the

compiler does not care about line returns, which is

why this program works if typed all on one

line.

2.Void() : The void keyword is used only in

function declarations. It indicates that the function

is expected to return no information to the function

from which it was called.

3.SERVO CONTROL PROGRAMMING:

There are two main portions of code that you'll see

explained and in detail below:

 -Initialization

 -Servo Control

 The first part of the code shows you how to

initialize the servo and all our variables, this is

important if you want to use more than 1 servo you

need to declare that. We'll be using the Arduino

Servo library for all out control to make things as

easy as possible.

Initialization

------------« Begin Code »------------
#include <Servo.h>

Servo myservo; // create servo

object to control a servo

 // a maximum of

eight servo objects can be created

void setup()

{

 myservo.attach(0); // attaches

the servo on pin 0 to the servo

object

 delay(5000);

}

..

...

------------« End Code »------------
The last portion of the code is where we actually

tell the servo where to move using the write

function of the Arduino's Servo library.

Main Loop

------------« Begin Code »------------
...

..

void loop()

{

 //Move To 0 Degrees

myservo.write(10);

 delay(5000);

 //Move To 45 Degrees

 myservo.write(45);

 delay(5000);

 //Move To 90 Degrees

 myservo.write(90);

 delay(5000);

//Move To 135 Degrees

 myservo.write(135);

 delay(5000);

 //Move To 180 Degrees

 myservo.write(170);

 delay(5000);

 //Move To 135 Degrees

 myservo.write(135);

 delay(5000);

 //Move To 90 Degrees

 myservo.write(90);

 delay(5000);

 //Move To 45 Degrees

 myservo.write(45);

 delay(5000);

}

------------« End Code »------------

B. The Simple Commands:-
This section covers the small set of commands we

needed to make the Arduino being operated

properly.

1. Serial.begin()

Description: Sets the data rate in bits per second

(baud) for serial data transmission. For

communicating with the computer, use one of these

rates: 300, 600, 1200, 2400, 4800, 9600, 14400,

19200, 28800, 38400, 57600, or 115200. You can,

however, specify other rates - for example, to

communicate over pins 0 and 1 with a component

that requires a particular baud rate. An optional

second argument configures the data, parity, and

stop bits. The default is 8 data bits, no parity, one

stop bit.

Syntax:
Serial.begin(speed)

Serial.begin(speed, config)

 Arduino Mega only:
Serial1.begin(speed)

Serial1.begin(speed, config)

Parameters:

speed: in bits per second (baud) – long.

2. servo.attach()

Description:-Attach the Servo variable to a pin.

Note that in Arduino 0016 and earlier, the Servo

library supports only servos on only two pins: 9

and 10.

Syntax:servo.attach(pin)

servo.attach(pin, min, max)

Parameters:servo: a variable of type Servo pin: the

number of the pin that the servo is attached to

min (optional): the pulse width, in microseconds,

corresponding to the minimum (0-degree) angle on

the servo (defaults to 544)

max (optional): the pulse width, in microseconds,
corresponding to the maximum (180-degree) angle
on the servo (defaults to 2400).

3. pinMode()

Description: Configures the specified pin to

behave either as an input or an output.This

command, which goes in the setup() function, is

used to set the direction of a digital I/O pin. Set the

pin to OUTPUT if the pin is driving and LED,

motor or other device. Set the pin to INPUT if the

pin is reading a switch or other sensor. On power

up or reset, all pins default to inputs.

Syntax: pinMode(pin, mode)

Parameters:

pin: the number of the pin whose mode you wish to

set

mode: INPUT, OUTPUT,

Returns : None

4. serial.print()

http://arduino.cc/en/Reference/Constants
http://arduino.cc/en/Reference/Constants

Description: The Serial.print command lets

you see what's going on inside the Arduino

from your computer.

For example, we can see the result of a math

operation to determine if you are getting the

right

number. Or, we can see the state of a digital

input pin to see if the Arduino is a sensor or

switch

properly. When our interface circuits or

program does not seem to be working, use the

Serial.print command to shed a little light on

the situation. For this command to show

anything,

you need to have the Arduino connected to the

host computer with the USB cable.

For the command to work, the command

Serial.begin(9600) must be placed in the

setup()

function. After the program is uploaded, we

must open the Serial Monitor window to see

the

response.

There are two forms of the print command.

Serial.print() prints on the same line while

Serial.println() starts the print on a new line.

Here is a brief program to check if your board

is alive and connected to the PC
void setup()

{

Serial.begin(9600);

Serial.println("Hello World");

}

void loop() {}

Here is a program that loops in place,

displaying the value of an I/O pin. This is

useful for

checking the state of sensors or switches and

to see if the Arduino is reading the sensor

properly.

Try it out on your Arduino. After uploading

the program, use a jumper wire to alternately

connect pin 2 to +5V and to Gnd.
void setup()

{

Serial.begin(9600);

}

void loop()

{

Serial.println(digitalRead(2));

delay(100);

}

If we wanted to see the states of pins 2 and 3

at the same time, you can chain a few print

commands, noting that the last command is a

println to start a new line.
void setup()

{

Serial.begin(9600);

}

void loop()

{

Serial.print("pin 2 = ");

Serial.print(digitalRead(2));

Serial.print(" pin 3 = ");

Serial.println(digitalRead(3));

21

delay(100);

}

5. analogRead()

Description: Reads the value from

the specified analog pin. The

Arduino board contains a 6 channel

(8 channels on the Mini and Nano,

16 on the Mega), 10-bit analog to

digital converter. This means that it

will map input voltages between 0

and 5 volts into integer values

between 0 and 1023. This yields a

resolution between readings of: 5

volts / 1024 units or, .0049 volts

(4.9 mV) per unit. It takes about

100 microseconds (0.0001 s) to

read an analog input, so the

maximum reading rate is about

10,000 times a second.

Syntax : analogRead(pin)

Parameters : pin: the number of the analog

input pin to read from (0 to 5 on most boards,

0 to 7 on the Mini and Nano, 0 to 15 on the

Mega)

Returns:- int (0 to 1023)

6. map(value, fromLow, fromHigh,

toLow, toHigh)

Description: Re-maps a number from one

range to another. That is, a value of fromLow

would get mapped to toLow, a value of

fromHigh to toHigh, values in-between to

values in-between, etc. Does not constrain

values to within the range, because out-of-

range values are sometimes intended and

useful. The constrain() function may be used

either before or after this function, if limits to

the ranges are desired. Note that the "lower

bounds" of either range may be larger or

smaller than the "upper bounds" so the map()

function may be used to reverse a range of

numbers, for example

y = map(x, 1, 50, 50, 1);

The function also handles negative numbers

well, so that this example

y = map(x, 1, 50, 50, -100); is

also valid and works well.

The map() function uses integer math so will

not generate fractions, when the math might

indicate that it should do so. Fractional

remainders are truncated, and are not rounded

or averaged.

Parameters :

 value: the number to map

fromLow: the lower bound of the value's

current range

fromHigh: the upper bound of the value's

current range

toLow: the lower bound of the value's target

range

toHigh: the upper bound of the value's target

range

Returns: The mapped value.

7. If

Description: This is the basic conditional

branch instruction that allows your program to

do two different things depending on whether

a specified condition is true or false. If the

condition is true, the program will execute the

commands between the braces. If the condition

is not true, the program will skip to the statement

following the braces.The condition compares one

thing to another.

delay()

Description: Pauses the program for the amount of

time (in miliseconds) specified as parameter.

(There are 1000 milliseconds in a second.) Since

most interactions with the world involve timing,

this is an essential instruction. The delay can be for

0 to 4,294,967,295 msec. In the project we used

delay(100); // waits 50 ms

Syntax:delay(ms)

Parameters:

ms: the number of milliseconds to pause (unsigned

long)

Returns: nothing.

III. SPECIFICATION

A. HARDWARE DETAILS

PARTS LIST:

 COMPONENTS SPECIFIC
ATION

QUANT
ITY
(Unit)

1. ARDUINO MEGA

2560

1

2. SERVO
MOTOR

SG90

(2.5K)

3

3. SERVO MOTOR MG996R(

10K)

2

4. SERVO MOTOR SMS4315

(14K

TORQUE

)

1

5. BREAD BOARD SOLDER

LESS

1

6. JUMPER WIRE MALE,

FEMALE

, MALE-

FEMALE

3

7. FLEX SENSOR 4.5” 5

8. BATTERY 11.1V 1

9. BATTERY
CHARGER

N/A 1

10. CHARGER

CONNECTING

CABLE

N/A 1

11. POWER IC N/A 2

12. PCB N/A 2

13. RESISTORS 22K 5

14. POT 10K ,

100K

2

15. STRING N/A 5

16. NEEDLE &
THREAD

N/A 1

17. SUPER GLUE N/A 1

18. A POWER DRILL N/A 1

19. SPRING N/A 10

20. RIGHT HAND
GLOVE

N/A 1

21. WOOD N/A 2

22. PLASTIC HUIS
PIPES

N/A 4

The associated pictures related to the hardware

components are given below:-

1. ARDUINO MEGA 2560

2. SERVO MOTOR SG90

3. SERVO MOTOR 14K TORQUE

4. SERVO MOTOR 10K TORQUE

5. BREAD BOARD

6. JUMPER WIRE

7. FLEX SENSOR

8. 11.1V BATTERY

9. BATTERY CONNECTOR

10. POWER IC

9.POTENTIOMETER (10K,100K)

9. 22K RESISTORS

10. SPRING

11. STRING

12. PCB

IV. IMPLEMENTATION AND

CONSTRUCTION

A. HARDWARE PROCEDURE

1.Set up the Sensor Circuit

The flex sensors require a circuit in order for

them to be compatible with Arduino. It's a

voltage divider: the flex sensors are variable

resistors, and when paired with resistors of a

static value, change in resistance (in this case

bending the sensor) can be sensed through the

change in voltage between the resistors. This

can be measured by the Arduino through its

analog inputs. The schematic is attached (red

is positive voltage, black is negative, and blue

goes to the Arduino). The resistors in the

photo are 22K. I color-coded the wires we

used in the same way as the schematic, so we

can see more easily.

The main GND wire, which is connected to all

the individual GND wires from the sensors,

gets plugged into the Arduino's GND. The

+5V from the Arduino goes to the main

positive voltage wire, and each blue wire gets

plugged into a separate analog input pin.

Then we soldered the circuit onto a small PCB.One

that could be easily mounted onto the glove.

We were able to solder the wires to the sensors

relatively easily also, and used heat shrink to make

sure there were no shorts.

We then wrapped the area where the wires are

connected to the sensors with electrical tape to

stabilize the sensors.

Near the bottom, where the leads are attached, the

sensors are a bit weaker and the tape ensures that

they won't bend too far and won't get damaged.

3. FLEX SENSOR MOUNTING

Now it's time to mount the sensors and their

circuit onto the glove itself. First, We drilled a

tiny hole in the plastic of the sensors (at the

top, once the resistive material has ended). Be

sure not to hit the resistive material! Then, put

on the glove and pull it tightly to your hand.

On each finger, with a pencil or pen, make

small lines over the tops of each joint/knuckle.

This will tell you where to sew the sensors.

Sew each sensor tip to the area of each finger

just above where each of your fingernails

would be (use the hole you just drilled). Then,

for each sensor, make loose loops around them

with thread at both joints in each finger. Once

each sensor is in place and slides under the

loops of thread nicely.

Then We sewed the PCB onto the wrist part of the

glove tightly.

REMEMBER: for each step in this process, be sure

We're not sewing the glove itself closed. That's

quite a hassle.

4. HAND AND SERVO BED

CONSTRUCTION

1. FINGERS ASSEMBLY

We used plastic hollow pipes to construst the finger

parts.When assembling the fingers, we made sure

that the parts were oriented correctly before gluing.

Also, we made make sure to re-drill the holes on

the finger parts so the 3mm screws will act as hinge

pins without causing friction.Then we connected

the part using a string and screws.

 Then we kept the screws in with a dab of hot glue

on the outside of the fingers.

2. SERVO BED CONSTRUCTION AND

SERVO MOUNTING:-

We have used a wooden piece to make the servo

bed. Here in the bed we made 5 servo motors to be

held perfectly within the bed. It’s just kind of a bed

for the servos. Later we have to put the strings to

connect the servos with each other. Here is the

construction figure shown below:-

Here is the picture of our wooden aervo bed shown

below:-

We waited before installing the strings into the

hand as we wanted to make sure the servos are

working first.

3. ADDING THE STRINGS:

Adding the strings is by far the hardest and most

tedious part of this project. It's simple in concept,

but difficult to actually execute. Threading the

fingers takes patience: remember that. The one

difference between my installation of the strings

and I used hot glue. To me, hot glue is more

adjustable when calibrating each finger because it

can be easily melted and re-hardened. We

connected the servo motor in a way we could move

our fingers with the exact comfort and flexilbity.

For that we calibrated the servo motors to connect

the strings with the exact process

To calibrate each servo ring so it flexes and relaxes

its finger when we wanted it to based on the input,

first we plugged in our Arduino and servo battery

and run the program. Then we put the glove on and

flex the finger that corresponds to the servo we’re

working on. We adjusted the servo ring so one hole

is closest possible to the fingers and pulled the

"relax" string of that finger as tightly as we can

without bending the finger. We put it through the

closest hole of the ring and glue it in place. Then,

straightened my finger and pulled and secured the

other string into the other hole. Then we repeated

this process with each finger. It's important to make

each string taut.

4. SETTING UP THE SERVO MOTOR

CIRCUIT:

1. SERVO MOTOR WIRING WITH

THE ARDUINO:

We connected the 5 servo motors (which had

been mounted on the servo-bed) and the

another servo (mounted on the hinge portion)

with the ARDUINO PWM pins. The PWM

input wire (orange) for each servo would be

attached to the Arduino pins as follows:

 Servo One - PWM -> Digital 9,

 Servo Two - PWM -> Digital 8,

 Servo Three - PWM -> Digital 7,

 Servo Four - PWM -> Digital 6,

 Servo Five - PWM -> Digital 5,

 Servo Six - PWM -> Digital 4,

Following is the diagram showing the

wiring of 6 servo motors with the Digital

(PWM) pins of ARDUINO:-

1. WIRING OF THE SIXTH (WRIST)

SERVO MOTOR:

The servo motor which we have mounted on the

wrist for it’s movement .Then it’s control(orange)

wire was first connected with the PWM pin 4.

Servo Six - PWM -> Digital 4

After that we connected its red and black (power)

wire of the servo with a small solder-less bread

board. We also connected a Potentiometer in series

with the power wires. We connected the positive

and the ground wire of the POT in series with the

power wires of the servo and connected the

variable resistive wire of the POT with an analog

pin of the ARDUINO.

5. THUMP CONSTRUCTION:

We used aluminium plate and a piece of

plastic glass for the thump construction. The

larger portion of t he wrist(Top surface) has

been constructed with aluminium plate and

has been threaded using threading machine.

The rest of the wrist has been constructed

using a plastic glass plate with which we

assembled the 5 fingers using super glue and

screws keeping the comfortable position of the

fingers in mind.

5. JOINING THE FINGERS WITH THE

THUMP:

We assembled the 5 fingers with the plastic

glass made portion of the wrist using super

glue and screws.

According to the following pictures we tried to

join all the fingers keeping comfort area and

the top and bottom view of the fingers in

mind.

5.BREAD BOARD DETAIL:

We used a bread board here to construct a

particular circuit for the operation of 16 k torque

servo motor for the control over the total hinge of

the hand.

V. FUCTIONAL TESTING

A. SOFTWARE

IMPLEMENTATION

1. SOFTWARE DOWNLOAD:

Following the instructions on the

Getting Started section of the Arduino

web site,

http://arduino.cc/en/Guide/HomePage.

we at first downloaded the latest

version of Arduino, arduino-1.0.5-

windows.

2. SOFTWARE INSTALLATION:

Going all the way through the steps to

where we saw the pin 13 LED blinking.

This is the indication that we had all

software and drivers successfully installed

and could start exploring with our own

programs.

3. SOFTWARE EXECUTION:

1.Connected our Arduino to the computer

with the USB cable. We did not need the

battery for that time.

The green PWR LED will light. If there was

already a program burned into the Arduino, it

will

run.

2.Started the Arduino development

environment. In Arduino-speak, programs are

called “sketches”,

but here we will just call them programs.

Our window would look something like this:-

3.Then we clicked the Upload button or Ctrl-U

to compile the program and load on the

Arduino board.

B. POWER ISSUE:

1. CONNETCING A BATTERY:

1.For stand-alone operation, the board is

powered by a battery rather than through the

USB connection to the computer. While the

external power can be anywhere in the range

of 6 to 24 V

(We used here a 11.1V Lithium ion battery), a

standard 9 V battery is convenient.

2.We then stablished Vin and Gnd connections

on the board, it is better to solder the battery

snap leads to a DC power plug and connect to

the power jack on the board.

N.B Watch the polarity as you connect your battery

to the snap as reverse orientation could blow out

your board.

3. Then we disconnected our Arduino from the

computer. Then we connected a 11.1 V battery to

the Arduino power jack using the battery snap

adapter confirming that the blinking program

runs. This showed that we could power the Arduino

from a battery and that the program we download

ed runs without needing a connection to the host

PC.

2. SETTING UP THE VOLTAGE OF POWER

IC:

Battery power input is 11.1V. This input is

supplied to 2 power ICs. Through power ICs we

have controlled the input voltage to get the desired

output of 7V & 3V. As the threshold voltage of

arduino is 7V and the threshold voltage of servo is

3V.One power IC is set to get output of 7V. The

output terminal of that power IC is connected to

Vin and Gnd pin of arduino. As the threshold

voltage of servo motor is 3V.Here the power

adjustment of the power IC is done by keeping the

multimeter positive and negative terminals into the

input side of the power IC, IN+ & IN- and we

varied the voltage with the help of power IC

voltage-variable nob. Another power IC is set to

get output of 3V. The output terminal of that power

IC is connected to PCB and 6 terminals are made

short with that so that 6 motors can get power

supply.

Here the voltage adjustment diagram of power IC

is given below.

4. CALIBRATING THE FLEX

SENSORS:

The sensor is simply a variable resistor that

changes its resistance in response to how much it is

bent. The way that the device works is based on its

construction. The sensor has a backplane of a thin

plastic polymer that can easily bend.

The bend sensor consists of a coated substrate, such

as plastic, that changes in electrical conductivity as

it is bent. This provides non-mechanical reliability

in electronic sensing and actuator technology.On

top of this polymer is a layer of carbon that forms a

resistor (which connects between the two metal

terminals on the left side).On top of the carbon are

equally sized and spaced squares of metal which

are glued in place at their centers to the backplane.

When the device is bent the spaces between the

metal plates grows larger and thus the amount of

carbon resistor shorted out by each metal square is

reduced. When that happens the resistance of the

sensor goes up. The response of the sensor is very

linear over its flexible range. The sensor can only

reliably indicate bending in one direction (into the

page as it is pictured here).

For calibrating the sensors, we used the sensor

with ARDUINO MEGA we fed the +5volt D.C as

we had a lot of problems getting reliable readings

from the sensor at first.. power supply voltage from

ARDUINO into one side of the sensor and then

measured the voltage on the other side of the sensor

using the yellow "analog in" jack on ARDUINO.

Since the device is simply a variable resistor the

voltage drop across the resistor changes with the

amount of bend the sensor undergoes.To calibrate

the sensor we simply created "our own sensor"

profile under ARDUINO programming software

and used the on screen volt meter to create a two

point calibration at zero and at 50% (90 degrees) of

bend.

5. TESTING THE SERVOS:

At this point, the servos should already be mounted

into the forearm. To connect them to the power

supply and Arduino, We used a small solder-less

breadboard. Connected each positive wire of the

servo (usually red) to one of the rails on the

breadboard, and the negative side of them (usually

black or brown) to another rail. I should be

remembered to connect the negative rail on the

breadboard to the Arduino's other GND: all the

GNDs in a circuit need to be connected for it to

work. The +VCC can be different, but the GNDs

need to be the same.

Then we uploaded the program to the Arduino (the

file is attached) and made sure of all the

connections to the glove and servos are correct. Put

on the glove, and turned on the Arduino. The

servos should rotate based on how much our

fingers are bent. If this is the case, it's working! If

you're more experienced with Arduino and know

how to test the input values of your particular

sensors, you can adjust the range in the program so

it works best for you. I assume all the sensors are

practically identical,.If the servos aren't working

properly, make sure all the connections are correct .

6. FINAL STEP : WIRING OF THE

TOTAL CIRCUIT WITH

EXECUTION

After completing all the steps mentioned above we

assembled all the stationary circuits together to

build tha main circuit for execution.The main

circuit diagram is given below:-

The final step is to upload the Arduino sketch to

our board. As soon as the Arduino resets, the hand

should start its calibration routine by moving each

servo through its range of motion.

First after uploading the program to the Arduino

and making sure all the connections to the glove

and servos are correct we put on the glove and have

plugged in the Arduino and servo battery and run

the program. Putting the glove on and flex the

finger that corresponded to the servo we were

working on. Then we adjusted the servo ring. The

servos rotated basing on how much fingers were

bent. So the program started working.

C. MILESTONE CHART

Research Sensor Options

Completed

Research Servo Options

Completed

Order Parts As Needed Completed

Setup ARDUINO Completed

Configure Power IC Completed

Interface

Interface With Servo

Motors

Completed

Interface With Flex

Sensor

Completed

Construction Of Hand Completed

Assembling The Hand Completed

Mounting the Servos Completed

Mounting the Flex Sensors Completed

Calibrating The Flex

Sensors

Completed

Write ARDUINO Sketch Completed

Testing The Completed

Code

Completed

Trouble-shooting Completed

VI. TROUBLE SHOOTING

A. GENERAL SAFETY RULES :

1. As with any machine with moving parts, be

careful not to let body parts get pinched. While the

hand has very little gaps and it may be difficult to

get trapped in them, it could potentially catch on

clothing, rings, etc.

2. When operating this hand apply a maximum of

5 VDC to the micro servos. Anything above this

voltage will destroy the small servos and will void

the warranty.

3. When working on the hand make sure all power

to the servos is turned off.

4. When the hand is at rest and not performing all

power should be turned off.

5. While this hand has compliance (mechanical

“give”) built into all fingers, it is still possible to

cause bodily and collateral damage with this hand

if it’s attached to a mechanism that is not carefully

controlled.

6. If excessive force is applied to any finger or

thumb for picking up heavy objects it may destroy

the servos or can destroy any mechanism.

7.Our animatronic hand is equipped with SG 90

Micro Servos. At any point in this hand’s lifespan:

 DO NOT Exceed 5 volts DC (VDC)

to the servos. The power IC is fixed to

be adjusted to a 3V max volt battery

supply,which is ideal to ensure this

voltage is never exceeded.

 DO NOT apply excessive force to the

fingers / thumb. This is multiplied by

the time it translates to torque on the

servo horn. This will cause damage,

typically resulting in “stripped” gears

but can also damage the internal servo

electronics.

 DO NOT get this hand wet. The

mechanisms contain steel hardware

which will rust if not cared for. The

servos are not water-resistant either.

8.All IN+ and IN- pins of the Power IC have to be

connected to the corresponding power supply pins.

B. COMPLIANCE ADJUSTMENT:

1. Each finger (including the thumb) is equipped

with a spring.

These systems can be adjusted to compress springs

more or less in each finger.

Less compression in the springs = more compliance

in the finger

If the springs are not adjusted equally per finger

this will shift the neutral position of the finger

(which can be beneficial at times)

2.When programming the hand in whichever servo

controller / microcontroller system you choose:

 Be very careful to define limits on each

finger / thumb. The new hand has shipped

with all servos at a “0” position (roughly

translating to 1500 ms). At this position

we have installed and tuned the finger /

thumb mechanisms to be at a relative “0”

position. This means that as you power up

the hand for the first time and without

inputting any position commands other

than “0” or “neutral” the hand will move

very close to the neautral position .

3.To find the end limits for each finger / thumb:

Because of the infinite position possibilities you

have when adjust this hand’s compliance, it is

impossible for to predict – for each system – what

those limits will be on the control system. You will

have to set these yourself.

 To set the end limits first unplug ALL

servos except the servo you are now

tuning.

 Using this servos address on your control

system carefully move the servo using

whichever commands are applicable to the

ARDUINO. Move this servo in small

increments and LISTEN. When you hear

the servo slightly “hum” and do not see

any more motion in the finger / thumb in

the direction you are traveling BACK

THE SERVO DOWN immediately.

Leaving it at this point will damage the

servo. By backing the servo down

(changing the value to slightly closer to

your neautral position value) you will

extend the life of that servo and battery

system powering the hand (stalled servos

pull more amps than servos with a near-

zero load).

4.Repeat the above for the opposite direction of

that finger / thumb.

5.Repeat this process above for each finger.

C. RISKS AND INTERFACED

ISSUES ENCOUNTERED WITH

THE HARD WARES

1. BREAD BOARD BURNT OUT

Many small test circuits had to be built on

breadboards and tested in the project, under actual

circumstances, to make sure they would not fry.

 CAUSE: Several components were not

grounded and did in fact fry. A breadboard

was also melted.

 TROUBLE SHOOT: The circuit

components must have to be

grounded properly when needed.

2. FLEX SENSOR READING

PROBLEMS

 CAUSE: This problem maybe caused due

to the wrong design of our analog circuit.

 TROUBLE SHOOT :

1.We connected in series: a 5 Vdc supply,

the flex sensor, 22K resistor and ground.

(That is, the end of the resistor that is not

connected to the sensor gets connected to

the ground of the 5Vdc power supply.)

2.Then we connected a voltmeter between

that same ground and the connection

between the sensor and the resistor.

Measured the voltage with various

amounts of flexing. That should tell you

what the analog input (AI) pin of your

Arduino will see. Once we had that circuit

giving us reasonable results, we went

back for getting the Arduino to read that

for us.

3. FINGERS WERE NOT MOVING

PROPERLY

 CAUSE: While it was not moving, a noise

from the servo was a steady “whirring”

sound. May be we have applied too much

force to the servo and stripped the internal

gears.

 TROUBLE SHOOT :

1. We reset the Arduino as we were using

one power source. Then Checked our

power supply. Checked whether it was

connected or not, Then checked whether

it supplying at least 3.5 volts that

minimum servo controller’s recommended

voltage or not.

2.Double checked our servo controller.

Checked whether it was receiving /

sending signals appropriately or not. Then

we tried plugging a loose, new servo into

the same port to test..

3.Inside the micro servo the motor is

grinding plastic against plastic. After the

proper testing we considered it as the main

reason behind the problem we

encountered . That’s why we tried SG90

sevos of metallic gear instead.

4.Slight adjustments in the servo

mounting holes may be necessary. This

modification would void the warranty but

may help your particular situation.

4. HAND/ WRIST FALLING OFF

 CAUSE : Lower clutch mechanism can't

be sufficiently tightened to raise the arm.

 TROUBLE SHOOT

1. As this occurred at the beginning stage,

I meant at the first try after

assembly, we moved the corresponding

motor and checked whether the

gears were correctly engaged or not. As

they were engaged properly we moved to

the second trouble shooting process.

2. We checked whether the tapping

screws were being installed on the wrist

properly or not. If they were, then it has

been possible the uppermost

screw of the base side being not tightened

enough. So, we tightened that

appropriately and thus succeeded to

trouble shoot.

5. SERVOS MOVING ERRATICALLY

 CAUSES WITH TROUBLE

SHOOTING:

As with any animatronic project, many times this

will come down to a complex system interaction

between our microcontroller / pc and the servo

controller. Usually the servos are just fine. Here are

some things that have been found with testing

done on multiple PC’s and servo controllers:-

 CAUSE-1 : Mechanisms may have been

subject to dirt or adverse conditions. This

can be confirmed by disconnecting the

mechanism from the servo.

 TROUBLE SHOOT:

We disconnected the mechanism from

the servo then again connected the

mechanism. If there were still issues the

hand would have to be carefully

disassembled, cleaned, re-assembled and

tuned as above.

But it didn’t work either.

 CAUSE-2: The of cause of this can be

almost always a “noisy” power supply.

Even though we may had carefully

selected an AC to DC 5VDC output

supply that can handle 1 A pull, it may

not be producing a quiet voltage.

 TROUBLE SHOOT:

1.Any control system can be riddled with

connection issues. Servos are usually the

most trouble-free devices in the entire

loop.,So. We backtracked into our servo

controller settings (rate mis-match, etc),

cable connections, ARDUINO

interference, and our code.

2.As the above did not solve the issue,we

tried plugging in a simple battery supply

of about 11.1 VDC and then converted the

voltage of the supply into 3VDC which is

the threshold voltage of the servo by

adjusting the voltage of a power IC. In all

cases this has corrected this issue in our

testing.

 CAUSE-3:. If your powering the servos

with a different power source than the

Arduino, they need to share the same

ground or the PWM signals will corrupt

between the Arduino and servos. Fingers /

thumb are moving but erratically.

 TROUBLE SHOOT: We checked all

our ground connections properly as the

above trouble shooting process couldn’t

resist the servos form moving erratically

in total . After that we reconnected those

thus we managed to solve this problem

finally.

6. SERVOS MOVING SLOWLY WHEN IT

SHOULD BE STOPPED

 CAUSE: This was a result of our servos

not being calibrated quite right.

 TROUBLE SHOOT: To calibrate our

servos we had to wait until our program

had the servos stopped . Then with a

small screwdriver we tuned the

potentiometer inside the servo (the little

opening in the servo casing just above

where the wires are). Then rotated that

either left or right until the servo was truly

stopped.

7. SERVOS BEING SO NOISY

 CAUSES WITH TROUBLE

SHOOTING :

The word servo refers solely to a device

that uses negative feedback for control.

One major drawback to working with

servos is the large amounts of electrical

noise they produce.This noise can

interfere with your sensors and can even

impair your microcontroller by causing

voltage dips on your regulated power line.

Large enough voltage dips can corrupt the

data in microcontroller registers or cause

the microcontroller to reset.

 CAUSE-1: cheap brushed motors can be

noisy. Cheap hobby grade servos can

sometimes chatter if they do not settle in a

stable state. This is normal and is caused by

poor tuning, a lack of a dead band, and

backlash between the motor and the encoder

(potentiometer).

 TROUBLE SHOOT:

1.We can get very quiet systems if you are

willing to pay for it.

2. Keeping our motor and power leads

as short as possible, we can decrease

noise by twisting the motor leads so they

spiral around each other.

 CAUSE-2: The main source of motor noise is

the commutator brushes, which can bounce as

the motor shaft rotates. This bouncing, when

coupled with the inductance of the motor

coils and motor leads, can lead to a lot of

noise on your power line and can even induce

noise in nearby lines.

 TROUBLE SHOOT : We didn’t go for

the trouble shooting of this as we found

the circuit to be more complicated to be

executed properly. That’s why we bought

the new SG90 motors with metalic gears

and thus tried to troubleshoot this

problem.

The further discussion about this Trouble

shooting process will be written on the

ASSUMPTIONS AND LIMITATIONS

portion of this report.

D. INTERFACED ISSUES

ENCOUNTERED WITH THE

SOFTWARE

1.COMMON CODING ERRORS:

 Forgetting the semi-colon at the end of a

statement

 Misspelling a command

 Omitting opening or closing braces

 Thus If there is a syntax error in the

program caused by a mistake in typing, an

error message will appear in the bottom of

the program window.

 THOUBLE SHOOTING:

Generally, staring at the error will reveal

the problem. If we continue to have

problems,

we should try these ideas:

 Running the Arduino program again.

 Checking that the USB cable is secure at

both ends.

 Rebooting our PC because sometimes the

serial port can lock up. If a “Serial

port…already in use” error appears when

uploading.

2. ERRORS ABOUT UNDECLARED

FUNCTIONS OR UNDECLARED

TYPES:

 CAUSE : The Arduino environment

attempts to automatically generate

prototypes for our functions, so that we

can order them as we like in our sketch.

This process, however, isn't perfect, and

sometimes leads to obscure error

messages.

If we declare a custom type in our code

and create a function that accepts or

returns a value of that type, we'll get an

error when we try to compile the sketch.

This is because the automatically-

generated prototype for that function will

appear above the type definition.

 TROUBLE SHOOT: If we declared a

function with a two-word return type (e.g.

"unsigned int") the environment would

not realize it's a function and would not

create a prototype for it. That meant we

needed to provide our own, or place the

definition of the function above any calls

to it.

VII. ASSUMPTIONS AND

LIMITATIONS

A. USING OF FLEX SENSORS IS

NOT COST EFFECTIVE

LIMITATION :

Flex sensors are so much costly. It took a huge

amount of money to be spent on the

implementation of this process. It’s one of

the main limitations of this project.

We could have used some other process to

make the sensors by ourselves, But

thinking of the time limit of the academic

submission of this project and also for the

perfection of the execution of this project

we used the costly Flex sensors.

ASSUMPTION:

We could have used the Neopren Bend

Sensors in place of the flex sensors for the

movement of the fingers of the

animatronic hand.

It would be of so much cost-effective but

time-consuming.

This bend sensor actually reacts (decreases

in resistance) to pressure, not specifically

to bend. But because it is sandwiched

between two layers of neoprene (rather

sturdy fabric), pressure is exerted while

bending, thus allowing one to measure

bend (angle) via pressure. It is sensitive

enough to register even slight bend and has

a large enough range to still get

information when the limbs are fully bent.

The neoprene is great for isolating the

conductive thread stitches and keeps the

sensor from wrinkling even when

repeatedly being bend.

The resistance range of this bend sensor depends a

lot on the initial pressure. Ideally you have above

2M ohm resistance between both contacts when the

sensor is lying flat and unattached. But this can

vary, depending on how the sensor is sewn and

how big the overlap of the adjacent conductive

surfaces are. Sewing the contacts can be done as

diagonal stitches of conductive thread – to

minimize the overlap of conductive surface. But

only the slightest bend or touch of the finger will

generally bring the resistance down to a few Kilo

ohm and, when fully pressured, it goes down to

about 200 ohm. The sensor still detects a

difference, right down to about as hard as you can

press with your fingers. The range is non-linear and

gets smaller as the resistance decreases.

B. USING OF UNNECESSARY FLEX

SENSORS

LIMITATION :

We used five flex sensors for the movement of

the five fingers of our animatronic hand.

But due to some unavoidable circumstances

one of the flex sensors has losen it’s

sensitivity. For the reason we needed to buy

one more flex sensors. But as the flex sesnsors

are costly, we switched to the another plan. We

decided to connect the last two fingers with the

animatronic hand with the same flex sensor.

Thus the fourth flex sensor has been used to

move the two fingers at a time.

ASSUMPTION: As the fourth flex sensor has

been used to move the two fingers at a time.

The other flex sensors could also be used for

the movement of the finger (more than one) at

a time. So, there were no need of buying

exactly the five flex sensor for the movement

of five fingers at a time. We assumed it

unnecessary.

C. COULDN’T DEAL WITH THE

MOTOR NOISE

LIMITATION : As we found the trouble

shooting circuit of motor noise a complex one

and also due to the time limit of the project

submission we couldn’t deal with the motor

noise. And we bought new motors to solve this

problem.

ASSUMPTION: For dealing with the motor

noise we assumed some of the measures which

we could have executed in case of having

some more duration of the project time-limit.

 SOLDERING CAPACITORS

ACROSS OUR MOTOR

TERMINALS.

Capacitors are usually the most effective way

to suppress motor noise, and as such we

recommend always solder at least one

capacitor across motor terminals. Typically we

will want to use anywhere 0.1uF capacitors,

soldered as close to the motor casing as

possible. For applications that require

bidirectional motor control, it is very important

that we do not use polarized capacitors!

 We can construct the following circuit if

the above measures cannot remove the

motor noise.

VIII. CONCLUSION:

We are glad that we chose to complete this

project on the Arduino. It was our first

real coding experience on this platform,

and we can say that compared to writing

C++, writing Wiring libraries for Arduino

makes for a much more fun and

Productive experience We are grateful

that our time on the C++ taught us a lot

about what is happening behind the

scenes, but quiet honestly it is nice to not

have to worry about it so much.

One thing we learned from this project is

that servos and flex sensors in positioning,

timing and environmental texture can lead

to all sorts of undesirable readings. We

were a bit disappointed with the

performance of the SG90 servos in this

particular use case, It required a lot of the

fine-tuning to get readings accurate as the

servo rotated.

As stated previously, another area I need to look

into is battery power. This project is a poor use

case for a 11.1V battery. A better long term

portable power supply would include a higher

efficiency in the output. That’s why we also used a

PC for the long term power supply.

Although the Animatronic hand did not operate

with no errors, it is a great success overall. The

Animatronic hand met all safety restrictions, easy

to operate and energy efficient. This types of

animatronic hand can be used for various puposes.

The Animatronic Hand can be implemented in all

the sectors where human interaction is needed,

like-Handling of the explosive objects, performing

various sophisticated operational jobs in the

medical sectors, Industrial manufacturing etc.

With more time and resources put for things like

motors and base design we can carry a much larger

payload and have a sturdier platform to carry

things in. Much of this project could be used or

improved upon by future EEE students.

IX. LESSON LEARNED

The risks were subject to like everyone else,

running the risk of not receiving all materials in

time. Also, the calibration of flex sensors and the

servos proved to be difficult. We also had to be

careful about the ARDUINO and its wiring. We

also needed to make diagrams so we did not

detach a bunch of wires and not know how to

rewire them. Due to the recent political affairs and

with the improper communication facilities,we also

ran the risk of not having enough man-power to

complete the project. This is why we needed to

start as early as possible. We had to work very hard

to complete this project in time! But in the end, the

challenge and learning experience were well worth

it.

X. TASKING AND SCHEDULING

1. Gathering the hard wares 1 week.

2. Construction of the hand and making the

glove ready 1 week.

3. Calibration of flex sensors and testing of

servos 1 week.

4. Arduino wiring and Arduino code 2

weeks.

5. Connecting the whole circuit with

trouble-shooting 1 week.

XI. BILL OF MATERIALS

COMPONENTS PRICE

1.ARDUINO
MEGA2560

1*2,000= 2,000T.K

2. SERVO SG90 5*500 =2,500T.K

3. SERVO 14K
TORQUE

1*1,200=1,200T.K

4.SERVO 10K
TORQUE

2*1000=2,000T.K

5. BREAD BOARD 1*180 =180T.K

5. JUMPER WIRE 3*150 = 450 T.K

6. BATTERY 1*1,800=1,800T.K

7. CHARGER 1*1,500=1,500 T.K

8. FLEX SENSOR 5*2,100=10,500T.K

9. BOSTER 2*250 =500T.K

10.POT 2*10 =20T.K

11.RESISTORS 5*2 =10 T.K

12.SPRING 10*5 =50 T.K

13.CHARGER
CONNECTING
CABLE

1*160=160 T.K

14.PCB 1*20=20 T.K

15.WOOD &
PLASTIC PIPES

100 T.K

 TOTAL=22,990 T.K

XII. REFERENCE

[1] The Absolute Beginner's Guide to

Arduino

http://forefront.io/a/beginners-guide-to-

arduino

[2] Principles of Robotics

http://www.g9toengineering.com/resources/

robotics.htm

[3] Servo Motor | Servo Mechanism |

Theory and Working Principle

http://www.electrical4u.com/servo-motor-
servo-mechanism-theory-and-working-
principle/

[4] DC Servo Motors | Theory of DC Servo

Motor

http://www.electrical4u.com/dc-servo-

motors-theory-and-working-principle/

[5] Introduction to Servo Motors

http://mechatronics.mech.northwestern.edu

/design_ref/actuators/servo_motor_intro.ht

ml

[6] DIY Robotic Hand Controlled by a

Glove and Arduino

by dschurman

http://www.instructables.com/id/DIY-

Robotic-Hand-Controlled-by-a-Glove-and-

Arduino/

[7] Animatronics

http://en.wikipedia.org/wiki/Animatronics

[8] Simple Servo Bed for InMoov

http://www.thingiverse.com/thing:65274

[9] AniHand - Animatronic Hand

http://letsmakerobots.com/node/34639

[10] Calibrator: An Arduino library to

calibrate sensors hooked to analog inputs

http://julianvidal.com/blog/calibrator-an-

arduino-library-to-calibrate-sensors-

hooked-to-analog-inputs/

[11] Arduino - Begin.

http://arduino.cc/en/Serial/begin

[12] Arduino learning pdf

http://www.ele.uri.edu/courses/ele205/Ardui

no%20-%20Learning.pdf

[13] Arduino Microcontroller

Guide

http://www.me.umn.edu/courses/me2011/ar

duino/arduinoGuide.pdf

[14] Arduino functions

http://playground.arduino.cc/Code/Functio

n

[15] Structuring Your Code into Functional

Blocks

https://www.inkling.com/read/arduino-

cookbook-michael-margolis-2nd/chapter-

2/recipe-2-10

[16] Arduino programming Problem

solution

http://stackoverflow.com/questions/1297589

5/arduino-argument-of-type-void-

classname-does-not-match-void-whi

http://forefront.io/a/beginners-guide-to-arduino
http://forefront.io/a/beginners-guide-to-arduino
http://www.g9toengineering.com/resources/robotics.htm
http://www.g9toengineering.com/resources/robotics.htm
http://www.g9toengineering.com/resources/robotics.htm
http://www.electrical4u.com/servo-motor-servo-mechanism-theory-and-working-principle/
http://www.electrical4u.com/servo-motor-servo-mechanism-theory-and-working-principle/
http://www.electrical4u.com/servo-motor-servo-mechanism-theory-and-working-principle/
http://www.electrical4u.com/dc-servo-motors-theory-and-working-principle/
http://www.electrical4u.com/dc-servo-motors-theory-and-working-principle/
http://mechatronics.mech.northwestern.edu/design_ref/actuators/servo_motor_intro.html
http://mechatronics.mech.northwestern.edu/design_ref/actuators/servo_motor_intro.html
http://mechatronics.mech.northwestern.edu/design_ref/actuators/servo_motor_intro.html
http://www.instructables.com/member/dschurman/
http://www.instructables.com/id/DIY-Robotic-Hand-Controlled-by-a-Glove-and-Arduino/
http://www.instructables.com/id/DIY-Robotic-Hand-Controlled-by-a-Glove-and-Arduino/
http://www.instructables.com/id/DIY-Robotic-Hand-Controlled-by-a-Glove-and-Arduino/
http://en.wikipedia.org/wiki/Animatronics
http://www.thingiverse.com/thing:65274
http://letsmakerobots.com/node/34639
http://julianvidal.com/blog/calibrator-an-arduino-library-to-calibrate-sensors-hooked-to-analog-inputs/
http://julianvidal.com/blog/calibrator-an-arduino-library-to-calibrate-sensors-hooked-to-analog-inputs/
http://julianvidal.com/blog/calibrator-an-arduino-library-to-calibrate-sensors-hooked-to-analog-inputs/
http://arduino.cc/en/Serial/begin
http://www.ele.uri.edu/courses/ele205/Arduino%20-%20Learning.pdf
http://www.ele.uri.edu/courses/ele205/Arduino%20-%20Learning.pdf
http://www.me.umn.edu/courses/me2011/arduino/arduinoGuide.pdf
http://www.me.umn.edu/courses/me2011/arduino/arduinoGuide.pdf
http://playground.arduino.cc/Code/Function
http://playground.arduino.cc/Code/Function
https://www.inkling.com/read/arduino-cookbook-michael-margolis-2nd/chapter-2/recipe-2-10
https://www.inkling.com/read/arduino-cookbook-michael-margolis-2nd/chapter-2/recipe-2-10
https://www.inkling.com/read/arduino-cookbook-michael-margolis-2nd/chapter-2/recipe-2-10
http://stackoverflow.com/questions/12975895/arduino-argument-of-type-void-classname-does-not-match-void-whi
http://stackoverflow.com/questions/12975895/arduino-argument-of-type-void-classname-does-not-match-void-whi
http://stackoverflow.com/questions/12975895/arduino-argument-of-type-void-classname-does-not-match-void-whi

[17] Blink Without Delay

http://arduino.cc/en/Tutorial/BlinkWithout

Delay

[18] Operating Two Servos with the Arduino

http://www.robotoid.com/appnotes/arduin
o-operating-two-servos.html

[19] Servo Problems With Arduino

http://rcarduino.blogspot.com/2012/04/ser
vo-problems-with-arduino-part-1.html

[20] Problem with arduino servo

http://electronics.stackexchange.com/questi

ons/93746/problem-with-arduino-servo

[21] Arduino Servo control problem,

external servo power source

https://forum.sparkfun.com/viewtopic.php?

f=32&t=24263

[22] Problem with multi servos on Arduino

http://www.youtube.com/watch?v=iZFO_8h

H7QY

[23]Multiple servo control

http://www.instructables.com/id/Serial-

Servo-Controller-wAduino-Control-Up-To-

1/

[24]Flex sensor

http://mech207.engr.scu.edu/SensorPresent

ations/Jan%20-

%20Flex%20Sensor%20Combined.pdf

[25] Arduino map() method

http://stackoverflow.com/questions/9024124

/arduino-map-method-why

[26] Arduino programming tutorial

http://opensourcehardwaregroup.com/tutor

ial-09-reading-analog-pins-and-converting-

the-input-to-a-voltage/

[27] Calibration of flex sensors

http://www.mtbs3d.com/phpBB/viewtopic.p

hp?f=138&t=17799

[28] Sensing A Bend With A Flex Sensor +

Arduino

http://bildr.org/2012/11/flex-sensor-

arduino/

[29] Arduino tutorial PWM

http://www.youtube.com/watch?v=Y1QraI5

i_XM

http://arduino.cc/en/Tutorial/BlinkWithoutDelay
http://arduino.cc/en/Tutorial/BlinkWithoutDelay
http://www.robotoid.com/appnotes/arduino-operating-two-servos.html
http://www.robotoid.com/appnotes/arduino-operating-two-servos.html
http://rcarduino.blogspot.com/2012/04/servo-problems-with-arduino-part-1.html
http://rcarduino.blogspot.com/2012/04/servo-problems-with-arduino-part-1.html
http://electronics.stackexchange.com/questions/93746/problem-with-arduino-servo
http://electronics.stackexchange.com/questions/93746/problem-with-arduino-servo
http://electronics.stackexchange.com/questions/93746/problem-with-arduino-servo
https://forum.sparkfun.com/viewtopic.php?f=32&t=24263&sid=06d5ca58e6721a8c7f05d3147819aafb
https://forum.sparkfun.com/viewtopic.php?f=32&t=24263&sid=06d5ca58e6721a8c7f05d3147819aafb
https://forum.sparkfun.com/viewtopic.php?f=32&t=24263&sid=06d5ca58e6721a8c7f05d3147819aafb
https://forum.sparkfun.com/viewtopic.php?f=32&t=24263
https://forum.sparkfun.com/viewtopic.php?f=32&t=24263
http://www.youtube.com/watch?v=iZFO_8hH7QY
http://www.youtube.com/watch?v=iZFO_8hH7QY
http://www.instructables.com/id/Serial-Servo-Controller-wAduino-Control-Up-To-1/
http://www.instructables.com/id/Serial-Servo-Controller-wAduino-Control-Up-To-1/
http://www.instructables.com/id/Serial-Servo-Controller-wAduino-Control-Up-To-1/
http://mech207.engr.scu.edu/SensorPresentations/Jan%20-%20Flex%20Sensor%20Combined.pdf
http://mech207.engr.scu.edu/SensorPresentations/Jan%20-%20Flex%20Sensor%20Combined.pdf
http://mech207.engr.scu.edu/SensorPresentations/Jan%20-%20Flex%20Sensor%20Combined.pdf
http://stackoverflow.com/questions/9024124/arduino-map-method-why
http://stackoverflow.com/questions/9024124/arduino-map-method-why
http://stackoverflow.com/questions/9024124/arduino-map-method-why
http://opensourcehardwaregroup.com/tutorial-09-reading-analog-pins-and-converting-the-input-to-a-voltage/
http://opensourcehardwaregroup.com/tutorial-09-reading-analog-pins-and-converting-the-input-to-a-voltage/
http://opensourcehardwaregroup.com/tutorial-09-reading-analog-pins-and-converting-the-input-to-a-voltage/
http://www.mtbs3d.com/phpBB/viewtopic.php?f=138&t=17799
http://www.mtbs3d.com/phpBB/viewtopic.php?f=138&t=17799
http://bildr.org/2012/11/flex-sensor-arduino/
http://bildr.org/2012/11/flex-sensor-arduino/
http://bildr.org/2012/11/flex-sensor-arduino/
http://bildr.org/2012/11/flex-sensor-arduino/
http://bildr.org/2012/11/flex-sensor-arduino/
http://www.youtube.com/watch?v=Y1QraI5i_XM
http://www.youtube.com/watch?v=Y1QraI5i_XM

